1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
// LockFreeHashMap -- A concurrent, lock-free hash map for Rust.
// Copyright (C) 2018  rolag
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

//! This module implements most of the logic behind the [::LockFreeHashMap].
//!
//! The talk that Dr. Click gave is available [here](https://www.youtube.com/watch?v=HJ-719EGIts).
//! However, the information below should ideally be enough to understand all the necessary code.
//!
//! The Rust standard library has an implementation of a [HashMap](::std::collections::HashMap).
//! However, to use it concurrently (and safely), one must put a [lock](::std::sync::Mutex) on it.
//! This is very inefficient and can lead to deadlocks.
//! In order to make something lock-free, at least one thread has to make progress after some time.
//! One of the main advantages of using lock-free structures is to avoid deadlocks and livelocks.
//! Concurrent algorithms typically make use of the atomic operation "compare and swap" (CAS),
//!     which atomically swaps one value for another
//!     only if the current value is equal to an expected value.
//! (They can also equivalently use Load Linked/Store Conditional)
//! Considering that a hash map stores a key/value pair (i.e. a key with some associated value),
//!     it is important that a key is always associated with a value it's supposed to be associated
//!     to.
//! This means avoiding an inconsistent state where you have a key/value pair `(K, V)`,
//!     where `V` could never be associated with `K`.
//! Lock-free hash maps have use cases in databases, web caching and large-scale business programs.
//!
//! # Guarantees
//! - This map has the same "guarantees" as simply having some number of global variables
//!     that can be updated atomically.
//! - `O(n)` time complexity, like any hash map.
//!
//! # Valid States
//!
//! ## Key for State Diagram
//! | Value  | Meaning                                                           |
//! | ------ | ----------------------------------------------------------------- |
//! | ∅/null | Empty; No value here.                                             |
//! |   K    | A key is here.                                                    |
//! |   X    | This key slot is taken because there is a newer table available.  |
//! |   V    | A value is here.                                                  |
//! |   V'   | A value is here but the table is currently being resized.         |
//! |   T    | Value was removed.                                                |
//!
//! ## State Diagram
//! ```text
//!   (∅, ∅) ---------> (X, ∅)
//!      |
//!      |
//!     \|/
//!   (K, ∅) ---------> (K, V) <=======> (K, T)
//!      |                 |                |
//!      |                 |                |
//!      |                \|/              \|/
//!      |              (K, V') -------> (K, X)
//!      |                                 /|\
//!      |                                  |
//!      └----------------------------------┘
//! ```
//! From this diagram,
//!     you can see that once a key slot is taken,
//!     it will always point to that key and only that key.
//! Therefore,
//!     if you have two threads (thread 1, thread 2)
//!     inserting `(K1, V1)` and `(K2, V2)` respectively,
//!     where `hash(K1) == hash(K2) == 5 (for example)`,
//!     and `K1 != K2`,
//!     and the array containing the key/value pairs is `(null, null)` at index 5.
//! Then one of the threads, e.g. thread 1,
//!     will perform the transition `(null, null) -> (K1, null)` at array index 5,
//!     allowing it afterwards to insert its value `V1`,
//! The other thread needs to continue probing (at index 6, 7, ...) to find a different key slot.
//! If another thread (thread 3) already inserted a key `K2` at some index after 5,
//!     then obviously thread 2 does not need to insert its key into the map at all.
//! Thus, there are no inconsistent states where you have a value that is paired with a key
//!     that it's not associated to.
//!
//!
//! ## Resizing
//! To resize the map,
//!     a new bigger array needs to be allocated
//!     and all the key/value pairs
//!     have to be moved from their current slots in the current array
//!     into slots in the new array.
//! Because other threads can call `insert()` and `remove()` while the key/value pairs are moved,
//!     there needs to be some way of determining what order this happened in
//!     and how to copy the slot into the newer table.
//! This is done by having any calls that try to access the current slot try and help complete
//!     the copy if they find a `V'` value.
//! So if a thread calls e.g. `get()` while this is happening,
//!     it needs to copy the current slot into the new map before returning.
//! (As an implementation detail, it also helps to copy other slots while it's at it.)
//!
//! The transitions necessary in both the old and new map are shown below:
//! ```text
//! Transition# |        [1]        |        [2]       |        [3]       |         [4]
//! Old Map     | (K, V) -> (K, V') |                  |                  | (K, V') -> (K, X)
//! New Map     |                   | (∅, ∅) -> (K, ∅) | (K, ∅) -> (K, V) |
//! ```
//! - Transition [1] marks the value slot as being copied.
//!   If another thread tries to access it while it's `V'`,
//!       then it must help complete copying this key/value pair into the newer map.
//!   Note that if V is actually null or `T`,
//!       we can simply set it to `X`
//!       and skip inserting a tombstone/null value into the newer map,
//!       which just wastes a key slot.
//! - Transition [2] and [3] copy the old value into the new map.
//!   They are separate states to remind you that separate threads can perform either.
//!   If inserting it fails,
//!     then we know that some thread didn't care about the current value
//!     and just `insert()`ed a new value anyway.
//!   This is fine and just means that `V` needs to be deallocated.
//!   This is because if the slot wasn't being copied,
//!     it would have overridden the current `V` with another,
//!     which would have ended up being copied into the newer table afterwards.
//! - Finally, transition [4] completes the copy by marking the valueslot as `X`,
//!     meaning there could be something here (or not)
//!     but you need to see the newer table to find out.
//!
//! If multiple threads are trying to `replace()` data at index `i` in the map,
//!     they have to either do it before transition [1] happens,
//!     or after transition [4] happens.
//! The main goal of this data structure is to be completely lock-free/non-blocking.
//! Therefore, instead of looping and waiting until all transitions have finished,
//!     which is essentially a blocking algorithm,
//!     each thread can help make progress by doing any (or all) of the 4 transitions above.

use crossbeam_epoch::{Guard, Shared};
use std::borrow::Borrow;
use std::collections::hash_map::RandomState;
use std::hash::{BuildHasher, Hash, Hasher};
use std::num::Wrapping;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::time::Duration;

use atomic::{AtomicBox, AtomicPtr, MaybeNull, NotNull, NotNullOwned};

#[derive(Debug)]
/// The hash map is implemented as an array of key-value pairs, where each key and value can be one
/// of several states. This enum represents the various states that a key can be in, excluding the
/// null/empty state.
pub enum KeySlot<K> {
    /// A key has been inserted into table. The key's associated value may or may not have been
    /// removed. Once a key is in this state it can't go into any other state.
    Key(K),
    /// This was an empty slot that is now taken. There is a newer (resized) table that should be
    /// used if this key slot was needed. Once a key is in this state it can't go into any other
    /// state.
    SeeNewTable,
}

#[derive(Debug, PartialEq)]
/// The hash map is implemented as an array of key-value pairs, where each key and value can be one
/// of several states. This enum represents the various states that a value can be in, excluding
/// the null/empty state.
pub enum ValueSlot<'v, V: 'v> {
    /// A value has been inserted into the table.
    Value(V),
    /// This state represents that a key has been inserted but then removed.
    Tombstone,
    /// The table is being resized currently and the value here still needs to be inserted into the
    /// newer table.
    ValuePrime(&'v ValueSlot<'v, V>),
    /// This state represents one of two things:
    ///     1) This was a `ValueSlot::Tombstone(_)` slot that is now taken. There is a newer
    ///        (resized) table that should be used if this value slot was needed.
    ///     2) This used to be a `ValueSlot::Value(_)` slot that has now been copied into the
    ///        newer table.
    /// This is the final state for any `ValueSlot`.
    SeeNewTable,
}

impl<'v, V> ValueSlot<'v, V> {
    /// Returns true if and only if the `ValueSlot` has discriminant `Tombstone`.
    pub fn is_tombstone(&self) -> bool {
        match self {
            &ValueSlot::Tombstone => true,
            _ => false,
        }
    }

    /// Returns true if and only if the `ValueSlot` has discriminant `ValuePrime`.
    pub fn is_valueprime(&self) -> bool {
        match self {
            &ValueSlot::ValuePrime(_) => true,
            _ => false,
        }
    }

    /// Returns true if and only if the `ValueSlot` has discriminant `Value`.
    pub fn is_value(&self) -> bool {
        match self {
            &ValueSlot::Value(_) => true,
            _ => false,
        }
    }

    /// Returns true if and only if the `ValueSlot` has discriminant `SeeNewTable`.
    pub fn is_seenewtable(&self) -> bool {
        match self {
            &ValueSlot::SeeNewTable => true,
            _ => false,
        }
    }

    /// Returns true if and only if the `ValueSlot` has either discriminant `ValuePrime` or
    /// `SeeNewTable`.
    pub fn is_prime(&self) -> bool {
        match self {
            &ValueSlot::SeeNewTable | &ValueSlot::ValuePrime(_) => true,
            _ => false,
        }
    }

    /// Return an `Option` reference to the inner value of generic type `V`.
    pub fn as_inner(value: Option<&Self>) -> Option<&V> {
        match value {
            Some(&ValueSlot::Value(ref v)) => Some(&v),
            Some(&ValueSlot::ValuePrime(v)) => ValueSlot::as_inner(Some(v)),
            _ => None,
        }
    }
}

/// Sometimes, when inserting a new value into the hash map, we only want to insert something if
/// the value already matches something.
///
/// This enum represents what key/value pair to match when searching in `put_if_match()`.
#[derive(Debug)]
pub enum Match {
    /// Match if there is no key/value pair in the map
    Empty,
    /// Match if there is a key/value pair in the map
    AnyKeyValuePair,
    /// Always match
    Always,
}

/// Sometimes when calling `put_if_match()` we want to insert a key and sometimes we just want to
/// compare it with some variable of type `Q`. This enum represents which one is intended.
pub enum KeyCompare<'k, 'q, K: 'k + Borrow<Q>, Q: 'q + ?Sized> {
    Owned(NotNullOwned<KeySlot<K>>),
    Shared(NotNull<'k, KeySlot<K>>),
    OnlyCompare(&'q Q),
}

impl<'k, 'q, K: Borrow<Q>, Q: ?Sized> KeyCompare<'k, 'q, K, Q> {
    pub fn new(key: K) -> Self {
        KeyCompare::Owned(NotNullOwned::new(KeySlot::Key(key)))
    }
    /// The purpose of this function is to ultimately get a value of type `&Q`.
    /// Because we need to call `deref()` and `borrow()` a few times, we need to put the result of
    /// these functions somewhere in order to return a reference. Thus, `QRef` and `QRef2` are
    /// introduced as helper types to place these values somewhere.
    fn as_qref(&self) -> QRef<K, Q> {
        match self {
            &KeyCompare::Owned(ref owned) => QRef::Shared(owned),
            &KeyCompare::Shared(ref not_null) => QRef::Shared(not_null),
            &KeyCompare::OnlyCompare(q) => QRef::Borrow(q),
        }
    }
}

/// See `KeyCompare::as_qref()` for the motivation behind this type.
enum QRef<'k, 'q, K: 'k + Borrow<Q>, Q: 'q + ?Sized> {
    Shared(&'k KeySlot<K>),
    Borrow(&'q Q),
}

impl<'k, 'q, K: Borrow<Q>, Q: ?Sized> QRef<'k, 'q, K, Q> {
    fn as_qref2(&self) -> QRef2<K, Q> {
        match self {
            &QRef::Shared(&KeySlot::Key(ref k)) => QRef2::Shared(k),
            &QRef::Shared(&KeySlot::SeeNewTable) =>
                unreachable!("KeyCompare must contain a `NotNull(KeySlot::Key(K))`"),
            &QRef::Borrow(q) => QRef2::Borrow(q),
        }
    }
}

/// See `KeyCompare::as_qref()` for the motivation behind this type.
enum QRef2<'k, 'q, K: 'k + Borrow<Q>, Q: 'q + ?Sized> {
    Shared(&'k K),
    Borrow(&'q Q),
}

impl<'k, 'q, K: Borrow<Q>, Q: ?Sized> QRef2<'k, 'q, K, Q> {
    fn as_q(&self) -> &Q {
        match self {
            &QRef2::Shared(k) => k.borrow(),
            &QRef2::Borrow(q) => q,
        }
    }
}

/// This enum represents the value to insert when calling `put_if_match()`, which is usually owned
/// when called from `LockFreeHashMap` and shared if its been copied from a previous, smaller map.
#[derive(Debug)]
pub enum PutValue<'v, V: 'v> {
    Owned(NotNullOwned<ValueSlot<'v, V>>),
    Shared(NotNull<'v, ValueSlot<'v, V>>),
}

impl<'v, V: PartialEq> PutValue<'v, V> {
    pub fn new(value: V) -> Self {
        PutValue::Owned(NotNullOwned::new(ValueSlot::Value(value)))
    }
    /// Returns a new `PutValue` containing an owned `ValueSlot::Tombstone` value.
    pub fn new_tombstone() -> Self {
        PutValue::Owned(NotNullOwned::new(ValueSlot::Tombstone))
    }
    /// Returns true if and only if the inner `ValueSlot` has discriminant `Tombstone`.
    pub fn is_tombstone(&self) -> bool {
        match self {
            &PutValue::Owned(ref owned) => if let ValueSlot::Tombstone = **owned {
                true
            } else {
                false
            },
            &PutValue::Shared(ref not_null) => {
                if let &ValueSlot::Tombstone = &**not_null {
                    true
                } else {
                    false
                }
            },
        }
    }

    pub fn ptr_equals(&self, value: NotNull<ValueSlot<V>>) -> bool {
        if (&*value as *const _) == self.as_raw() {
            true
        } else {
            false
        }
    }

    pub fn as_raw(&self) -> *const ValueSlot<'v, V> {
        match self {
            &PutValue::Owned(ref not_null) => &**not_null as *const _,
            &PutValue::Shared(ref not_null) => &**not_null as *const _,
        }
    }
}

pub type KVPair<'v, K, V> = (AtomicPtr<KeySlot<K>>, AtomicPtr<ValueSlot<'v, V>>);

/// A map containing a unique, non-resizable array to the Key/Value pairs. If the map needs to be
/// resized, a new `MapInner` must be created and its Key/Value pairs must be copied from this one.
/// Logically, this struct owns its keys and values, and so is responsible for freeing them when
/// dropped.
#[derive(Debug)]
pub struct MapInner<'v, K, V: 'v, S = RandomState> {
    /// The key/value pairs in this map, allocated as an array of pairs.
    map: Vec<KVPair<'v,K,V>>,
    /// The amount of key/value pairs in the array, if any.
    size: AtomicUsize,
    /// Points to the newer map or null if none.
    pub(crate) newer_map: AtomicPtr<MapInner<'v,K,V,S>>,
    /// Any thread can allocate memory to resize the map and create `newer_map`. Thus, we want to
    /// try and limit the amount of allocations done. This is a monotonically increasing count of
    /// the number of threads currently trying to allocate a new map, which is used as a heuristic.
    /// See its use in the `MapInner::create_newer_map()` function.
    resizers_count: AtomicUsize,
    /// The number of `::COPY_CHUNK_SIZE = 32` element chunks that some thread has commited to
    /// copying to the newer table. Once this reaches `capacity/COPY_CHUNK_SIZE`, we know that the
    /// entire map has been copied into the large `newer_map`.
    chunks_copied: AtomicUsize,
    /// The actual number of key/value pairs that have been copied into the newer map.
    slots_copied: AtomicUsize,
    /// The hasher used to hash keys.
    hash_builder: S,
}


impl<'v, K, V, S> MapInner<'v, K, V, S> {
    /// The default size of a new `LockFreeHashMap`.
    pub const DEFAULT_CAPACITY: usize = ::LockFreeHashMap::<(), (), RandomState>::DEFAULT_CAPACITY;

    /// Returns the capacity of the current map; i.e. the length of the `Vec` storing the key/value
    /// pairs.
    pub fn capacity(&self) -> usize {
        self.map.capacity()
    }

    /// Returns the size of the current map at some point in time; i.e. the number of key/value
    /// pairs in the map.
    pub fn len(&self) -> usize {
        self.size.load(Ordering::SeqCst)
    }

    pub fn get_at(&self, pos: usize) -> Option<&KVPair<'v, K, V>> {
        self.map.get(pos)
    }

    /// Drops `self.newer_map` and any newer maps that `self.newer_map` points to.
    pub unsafe fn drop_newer_maps(&self, guard: &Guard) {
        if let Some(newer_map) = self.newer_map.take(guard) {
            newer_map.drop_self_and_newer_maps(guard);
        }
    }

    /// Drops self, `self.newer_map` and any newer maps that `self.newer_map` points to.
    pub unsafe fn drop_self_and_newer_maps(self, guard: &Guard) {
        let newer_map = self.newer_map.take(guard);
        drop(self);
        if let Some(newer_map) = newer_map {
            newer_map.drop_self_and_newer_maps(guard);
        }
    }
}

impl<'v, K: Hash + Eq, V: PartialEq> MapInner<'v,K,V,RandomState> {
    /// Creates a new `MapInner`. Uses the next power of two if size is not a power of two.
    pub fn with_capacity(size: usize) -> Self {
        MapInner::with_capacity_and_hasher(size, RandomState::new())
    }
}

impl<'guard, 'v: 'guard, K, V, S> MapInner<'v, K,V,S>
    where K: Hash + Eq,
          V: PartialEq,
          S: BuildHasher + Clone,
{
    pub fn with_capacity_and_hasher(size: usize, hasher: S) -> Self {
        let size = usize::checked_next_power_of_two(size).unwrap_or(Self::DEFAULT_CAPACITY);
        let mut map = Vec::with_capacity(size);
        for _ in 0..size {
            map.push((AtomicPtr::new(None), AtomicPtr::new(None)));
        }
        MapInner {
            map: map,
            size: AtomicUsize::new(0),
            newer_map: AtomicPtr::new(None),
            resizers_count: AtomicUsize::new(0),
            chunks_copied: AtomicUsize::new(0),
            slots_copied: AtomicUsize::new(0),
            hash_builder: hasher,
        }
    }

    /// Help copy a small chunk of the map to the `newer_map`. See `::COPY_CHUNK_SIZE` for the
    /// default chunk size.
    pub fn help_copy(
        &self,
        newer_map: NotNull<Self>,
        copy_everything: bool,
        outer_map: &AtomicBox<Self>,
        guard: &'guard Guard,
    ) {
        /// Checked multiplication that gives an `upper_bound` value if the multiplication exceeds
        /// the bound (or if overflow occurs).
        fn checked_times(first: usize, second: usize, upper_bound: usize) -> usize {
            let result = first * second;
            if first != 0 && result/first != second {
                upper_bound
            } else if result > upper_bound {
                upper_bound
            } else {
                result
            }
        }
        loop {
            // `chunks_copied` is an atomic variable that keeps track of which chunk will be copied
            // into the newer table.
            let chunks_copied = self.chunks_copied.fetch_add(1, Ordering::SeqCst);
            let next_chunk = chunks_copied + 1;
            // Next find the element-wise lower and upper bounds respectively.
            let lower_bound = checked_times(chunks_copied, ::COPY_CHUNK_SIZE, self.capacity());
            let upper_bound = checked_times(next_chunk, ::COPY_CHUNK_SIZE, self.capacity());
            debug_assert!(lower_bound <= upper_bound);
            // If they're equal, then we know another thread incremented `chunks_copied` such that
            // `(chunks_copied + 1) * COPY_CHUNK_SIZE` will be equal to the size of the current
            // map. Therefore, we have nothing left to copy and can return.
            if lower_bound >= upper_bound {
                // But before we do, we should decrement `chunks_copied` by 1, just to make sure it
                // won't overflow. It can still overflow if you have `usize::MAX` amount of threads
                // calling `help_copy`, but it will be assumed that this never happens.
                self.chunks_copied.fetch_sub(1, Ordering::SeqCst);
                // In the rare event that the `newer_map` has finished copying all its elements
                // into an even `newer_map`, it can call `promote()` and fail, because it's not the
                // current map. Thus, we call it again here, even if some other thread was
                // "supposed" to have called it.
                self.try_promote(newer_map, 0, outer_map, guard);
                return;
            }
            let mut slots_copied = 0;
            // Now because `lower_bound` must be less than `upper_bound`, and since we already
            // assumed that any thread that gets some `chunks_copied` MUST then copy all elements
            // in that chunk, we MUST do so.  Notice that the `..upper_bound` is exclusive, so it
            // never exceeds (self.capacity() - 1).
            for i in lower_bound..upper_bound {
                // Now simply copy_slot() for each element in the chunk of the array that we're
                // assigned.
                if self.copy_slot(&*newer_map, i, outer_map, guard) {
                    slots_copied += 1;
                }
            }
            self.try_promote(newer_map, slots_copied, outer_map, guard);
            if upper_bound == self.capacity() {
                return;
            } else if !copy_everything {
                // Otherwise, we did not copy everything and there is still more to be done,
                // or at least there was more when we last checked `chunks_copied`. If we are not
                // required to copy everything, then just return and let some other thread do it.
                return;
            }
            // Otherwise, continue the loop and keep copying until everything is copied.
        }
    }

    /// Once a `MapInner` has had all its elements copied to its `newer_map` field,
    /// the LockFreeHashMap's `inner` field must be promoted so that its effects are visible
    /// globally.
    pub fn promote(
        &self,
        new_map: NotNull<Self>,
        outer_map: &AtomicBox<Self>,
        guard: &'guard Guard,
    ) -> bool
    {
        // We only have a `&self` reference to the current `MapInner`. Thus, we need to load it
        // manually from `outer_map`, which must be passed as a parameter throughout various
        // function calls...
        let current_map_shared: NotNull<_> = outer_map.load(guard);
        let current_map: &MapInner<_,_,_> = &*current_map_shared;
        // This appears to be that some other thread already promoted us, or the rare event in
        // which we called `promote()` before the previous map called `promote()`.
        // Just return here.
        if current_map as *const _ != self as *const _ {
            return false;
        }
        match outer_map.compare_and_set_shared(current_map_shared, new_map, guard) {
            Ok(_) => {
                // We successfully swapped the value of the `AtomicBox` and are therefore
                // responsible for freeing the old map's memory.
                unsafe { guard.defer(move || current_map_shared.as_shared().into_owned()); }
                return true;
            },
            Err((_current, _)) => {
                debug_assert!(&*_current as *const _ != self as *const _);
                // We know that `current_map` was `&self` at some point previously, so some other
                // thread successfully promoted the map.
                return false;
            },
        }
    }

    fn ensure_slot_copied(
        &self,
        copy_index: usize,
        outer_map: &AtomicBox<Self>,
        guard: &'guard Guard,
    ) -> NotNull<'guard, Self> {
        let newer_map_shared = self.newer_map.load(&guard);
        if let Some(new_map) = newer_map_shared.as_option() {
            if self.copy_slot(&*new_map, copy_index, outer_map, guard) {
                self.slots_copied.fetch_add(1, Ordering::SeqCst);
            }
            self.help_copy(new_map, false, outer_map, guard);
            new_map
        } else {
            unreachable!("can't call ensure_slot_copied() unless found a prime value");
        }
    }

    pub fn try_promote(
        &self,
        new_map: NotNull<Self>,
        current_slots_copied: usize,
        outer_map: &AtomicBox<Self>,
        guard: &'guard Guard
    ) -> bool
    {
        let previous_slots_copied = self.slots_copied.fetch_add(current_slots_copied, Ordering::SeqCst);
        if current_slots_copied > 0 {
        debug_assert!(previous_slots_copied + current_slots_copied <= self.capacity(),
            format!("previous: {} current: {}", previous_slots_copied, current_slots_copied)
        );
        }
        if previous_slots_copied + current_slots_copied == self.capacity() {
            self.promote(new_map, outer_map, guard)
        } else {
            false
        }
    }

    /// Copies a single key/value pair from the map in `&self` to the map in `&self.newer_map`.
    ///
    /// Returns whether or not this thread was the one to copy the slot. Since copying takes
    /// several transitions that could happen from any thread, it doesn't matter which transition
    /// we pick as long as exactly one thread reports true for copying a specific slot.
    pub fn copy_slot(
        &self,
        new_map: &Self,
        old_map_index: usize,
        outer_map: &AtomicBox<Self>,
        guard: &'guard Guard
    ) -> bool
    {
        /// This is necessary because we're copying a value slot from an older map into a newer
        /// map. Thus, when we call `AtomicPtr::load(_, guard)`, we get a pointer that is only
        /// valid for the guard's lifetime. But it needs to be inserted into the newer_map and
        /// therefore must be valid for the lifetime in newer map.
        /// FIXME: Is this necessary? It seems like you would need recursive lifetimes to express
        ///        that `newer_map` has a different lifetime to `self`.
        fn cheat_lifetime<'guard, 'v, V>(maybe: MaybeNull<'guard, V>) -> MaybeNull<'v, V> {
            MaybeNull::from_shared(Shared::from(maybe.as_shared().as_raw()))
        }
        let (ref atomic_key_slot, ref atomic_value_slot) = self.map[old_map_index];
        let old_key: NotNull<_>;
        let mut new_key = NotNullOwned::new(KeySlot::SeeNewTable);

        // Preemptively set an empty key slot to `SeeNewTable`.
        loop {
            let cas_key_result = atomic_key_slot.compare_and_set_owned_weak(
                MaybeNull::from_shared(Shared::null()), new_key, guard);
            match cas_key_result {
                Ok(_new_key) => {
                    debug_assert!(if let &KeySlot::SeeNewTable = &*_new_key {true} else {false});
                    return true;
                },
                Err((current, new)) => {
                    new_key = new; // Return ownership
                    let _old_key_shared = current;
                    // Because `compare_and_set_weak()` can spuriously fail and therefore still be
                    // null. Thus, just retry with `continue` if it's still null.
                    match current.as_option() {
                        // No one updated the key slot from `empty` to something else, due to using
                        // a weak version of CAS here. Thus, we can try again.
                        None => continue,
                        Some(k) => {
                            match k.deref() {
                                &KeySlot::SeeNewTable => return false,
                                &KeySlot::Key(_) => {
                                    debug_assert!(current.as_option().is_some());
                                    old_key = k;
                                    break;
                                },
                            }
                        }
                    }
                },
            }
        }

        // If we got to this point, then we know that there is an existing, non-null key. Thus, we
        // need to do the following state transitions:
        //
        //         |     [1]           |         [2]               |        [3]
        // --------+-------------------+---------------------------+-------------------
        // Old Map | (K, V) -> (K, V') |                           | (K, V') -> (K, X)
        // --------+-------------------+---------------------------+-------------------
        // New Map |                   | (null, null) -> (K, null) |
        //         |                   | (K, null) -> (K, V)       |
        //
        // However, if, in transition [1]:
        //      1) V is null here, then just set it to X and let the thread that's trying to
        //         copy in its (K,V) pair insert it into the newer map.
        //      2) V is a tombstone (T) here, then just set it to X and don't copy a key
        //         without a value into the newer map.
        // Note that also both operations in transition [2] can happen on two different threads.
        // In addition, care needs to be taken for the rest of this function to ensure that we
        // (defer) drop destructors that we need to, but only once.
        let mut old_value: MaybeNull<_> = cheat_lifetime(atomic_value_slot.load(guard));
        let not_null_old_value: NotNull<_>;
        let primed_old_value: NotNull<ValueSlot<_>>;
        let mut original_valueslot_value = None;

        loop {
            match old_value.as_option() {
                // Swap `None`/`Null` values with `SeeNewTable`.
                None => {
                    match atomic_value_slot.compare_and_set_owned(
                        MaybeNull::from_shared(Shared::null()),
                        NotNullOwned::new(ValueSlot::SeeNewTable),
                        guard,
                    ) {
                        Err((current, _)) => {
                            debug_assert!(current.as_option().is_some());
                            old_value = cheat_lifetime(current);
                            continue;
                        },
                        Ok(current) => {
                            // Successfully did (K,null) -> (K, X). Thus there's nothing more to do
                            // here, and we obviously don't need to free the null pointer.
                            debug_assert!(current.deref().is_seenewtable());
                            return true;
                        },
                    }
                },
                // Otherwise we have a `ValueSlot` here. Let's take a little peek inside.
                Some(not_null) => match not_null.deref() {
                    // Some other thread copied the slot already. Nothing to do or free here.
                    &ValueSlot::SeeNewTable  => return false,
                    &ValueSlot::Tombstone => {
                        match atomic_value_slot.compare_and_set_owned(
                            old_value,
                            NotNullOwned::new(ValueSlot::SeeNewTable),
                            guard,
                        ) {
                            Err((current, _)) => {
                                // Assert that `Tombstone` can't turn into `Null`. But it can still
                                // be V/V'/T/X
                                debug_assert!(current.as_option().is_some());
                                old_value = cheat_lifetime(current);
                                continue;
                            },
                            Ok(_new) => {
                                // Successfully did (K, T) -> (K, X). Remember that `old_value`
                                // here is just the atomic pointer to the tombstone. However, all
                                // `ValueSlot`s are behind pointers and therefore need to be freed.
                                debug_assert!(_new.is_seenewtable());
                                unsafe { guard.defer(move || not_null.drop()); }
                                return true;
                            }
                        }
                    },
                    // There's a value here. So (K, V) -> (K, V') needs to happen.
                    &ValueSlot::Value(_) => {
                        // old_value was `Value` and not `ValuePrime`.
                        let primed_old_value_owned = NotNullOwned::new(ValueSlot::ValuePrime(not_null.deref()));
                        match atomic_value_slot.compare_and_set_owned(
                            old_value, // `ValueSlot::Value(_)`
                            primed_old_value_owned,
                            guard
                        ) {
                            Err((current, _dropped_because_owned)) => {
                                debug_assert!(current.as_option().is_some());
                                old_value = cheat_lifetime(current);
                                continue;
                            },
                            Ok(shared_primed_value) => {
                                // We are the ones that successfully did (K, V) -> (K, V').
                                // We are the only ones who performed this exact transition, so
                                // we will be the ones who will free V if V has not been
                                // successfully inserted into the newer map. We are the only one's
                                // who will do this so that we can avoid a double free. So let's
                                // store the `ValueSlot` that we need to free in this variable.
                                original_valueslot_value = Some(not_null);
                                debug_assert!(shared_primed_value.is_valueprime());
                                not_null_old_value = not_null;
                                primed_old_value = shared_primed_value;
                                break;
                            },
                        }
                    }
                    &ValueSlot::ValuePrime(_)  => {
                        not_null_old_value = not_null;
                        primed_old_value = not_null;
                        break;
                    }
                }
            }
        }

        // If we have gotten this far, then we know that at least the first transition has
        // occurred, i.e. (K, V) -> (K, V').
        // Also, `not_null_old_value` and `primed_old_value` are assigned, with
        // `not_null_old_value` being either `Value` or `ValuePrime`.
        debug_assert!(not_null_old_value.is_value() || not_null_old_value.is_valueprime());
        debug_assert!(primed_old_value.is_valueprime());

        // Now, we know that `old_value` must be either V or V', depending on whether
        // `not_null` was a `ValueSlot::Value(_)` or `ValueSlot::ValuePrime(_)`.
        let put_value = match not_null_old_value.deref() {
            &ValueSlot::Value(_) => PutValue::Shared(not_null_old_value),
            &ValueSlot::ValuePrime(v) => match v {
                &ValueSlot::Value(_) =>
                    PutValue::Shared(MaybeNull::from_shared(Shared::from(v as *const _))
                        .as_option().expect("v is a reference and can't be null")
                    ),
                _ => unreachable!("`ValuePrime` can only be a reference to a `Value`"),
            }
            &ValueSlot::Tombstone => unreachable!(),
            &ValueSlot::SeeNewTable => unreachable!(),
        };
        // Now we try to copy the original value into the newer map, but only if there is
        // no value in there already. If this fails, then it was copied and/or updated in
        // the newer map.
        //
        // We copied the key/value pair into the new map if the previous value associated
        // with the key `is_none()`.
        let copied_into_new = new_map.put_if_match(
            KeyCompare::Shared(old_key),
            put_value,
            Match::Empty,
            outer_map,
            guard
        ).is_none();
        if copied_into_new {
            debug_assert!(!atomic_key_slot.is_tagged(guard));
            debug_assert!(!atomic_value_slot.is_tagged(guard));
            atomic_key_slot.tag(guard);
            debug_assert!(atomic_key_slot.is_tagged(guard));
        }

        // Now we simply need to just do (K, V') -> (K, X).
        let primed_old_value_maybe: MaybeNull<_> = primed_old_value.as_maybe_null();
        match atomic_value_slot.compare_and_set_owned(
            primed_old_value_maybe, NotNullOwned::new(ValueSlot::SeeNewTable), guard
        ) {
            Ok(_current) => {
                debug_assert!(_current.is_seenewtable());
                unsafe { primed_old_value_maybe.try_defer_drop(guard); }
            },
            Err((current, _)) => {
                debug_assert!(current.as_option()
                    .map(|v| v.is_seenewtable())
                    .unwrap_or(false),
                    "can't be null again"
                );
            },
        }
        // This is only `Some` if we are the thread that did (K, V) -> (K, V').
        if let Some(original_value) = original_valueslot_value {
            unsafe { guard.defer(move || {
                // We only want to drop this value if it was never copied to the new map.
                if !atomic_key_slot.is_tagged(guard) {
                    original_value.drop();
                }
            })}
        }
        return copied_into_new;
    }

    /// If `newer_map` doesn't exist, then this function tries to allocate a newer map that's
    /// double the size of `self`.
    ///
    /// Returns a `Shared` pointer to the newer map
    pub fn create_newer_map(&self, guard: &'guard Guard) -> NotNull<'guard, Self>
    {
        fn try_double(current_size: usize) -> usize {
            let doubled_size = current_size << 1;
            if doubled_size < current_size {
                current_size
            } else {
                doubled_size
            }
        }
        let newer_map: MaybeNull<Self> = self.newer_map.load(guard);
        if let Some(not_null) = newer_map.as_option() {
            return not_null;
        }
        let size = self.capacity();
        let mut new_size = size;
        // Double size if map is >25% full
        if size > (self.capacity() >> 2) {
            new_size = try_double(new_size);
            // Double size if map is >50% full
            if size > (self.capacity() >> 1) {
                new_size = try_double(new_size);
            }
        }
        let array_element_byte_size: usize = ::std::mem::size_of::<KVPair<K,V>>();
        // This doesn't need to be accurate, so it can be wrapping to ensure it never panics.
        let Wrapping(size_in_megabytes)
            = (Wrapping(array_element_byte_size) * Wrapping(size)) >> (2^10 * 2^10);
        let current_resizers = self.resizers_count.fetch_add(1, Ordering::SeqCst);
        if current_resizers >= 2 && size_in_megabytes > 0 {
            let newer_map: MaybeNull<Self> = self.newer_map.load(guard);
            if let Some(not_null) = newer_map.as_option() {
                return not_null;
            }
            ::std::thread::sleep(Duration::from_millis(size_in_megabytes as u64));
        }
        let newer_map: MaybeNull<Self> = self.newer_map.load(guard);
        if let Some(not_null) = newer_map.as_option() {
            return not_null;
        }
        debug_assert!(new_size >= self.capacity());
        match self.newer_map.compare_null_and_set_owned(
            NotNullOwned::new(Self::with_capacity_and_hasher(new_size, self.hash_builder.clone())),
            guard
        ) {
            Ok(shared_newer_map) => {
                shared_newer_map
            },
            Err((current, _drop_our_map)) => {
                debug_assert!((&*current as *const _) != (self as *const _));
                current
            },
        }
    }

    pub fn hash_key<Q: ?Sized>(&self, key: &Q) -> usize
        where K: Borrow<Q>,
              Q: Hash + Eq,
    {
        let mut hasher = self.hash_builder.build_hasher();
        key.hash(&mut hasher);
        // Assumes usize <= u64
        let hash = hasher.finish() as usize;
        // Since the len()/capacity() of the map is always a power of two, we can use a bitwise-and
        // operation
        hash & (self.capacity() - 1)
    }

    pub fn keys_are_equal<T1: ?Sized, T2: ?Sized>(&self, first: &T1, second: &T2) -> bool
        where T2: PartialEq<T1>,
    {
        second == first
    }

    /// Returns the current value associated with some key, if any.
    pub fn get<Q: ?Sized>(
        &self,
        key: &Q,
        outer_map: &AtomicBox<Self>,
        guard: &'guard Guard
    ) -> Option<&'guard V>
        where K: Borrow<Q>,
              Q: Hash + Eq + PartialEq<K>,
    {
        // First we need to find/probe the index of the key.
        let initial_index = self.hash_key(key);
        let len = self.capacity();
        for index in (initial_index..len).chain(0..initial_index) {
            let (ref atomic_key_slot, ref atomic_value_slot) = self.map[index];
            // Early exit if neither the key nor value are fully inserted.
            if !atomic_key_slot.relaxed_exists(&guard) || !atomic_value_slot.relaxed_exists(&guard)
            {
                return None;
            }
            match &*atomic_key_slot.load(&guard).as_option()? {
                &KeySlot::Key(ref k) => if self.keys_are_equal(k, key) {
                    match atomic_value_slot.load(&guard).as_option()?.deref() {
                        &ValueSlot::Value(ref v) => return Some(&v),
                        &ValueSlot::Tombstone => return None,
                        // We call ensure_slot_copied() even on `SeeNewTable` because it calls
                        // try_promote().
                        &ValueSlot::ValuePrime(_) | &ValueSlot::SeeNewTable => {
                            return self.ensure_slot_copied(index, outer_map, guard)
                                .get(key, outer_map, guard)
                        }
                    }
                } else {
                    continue
                },
                &KeySlot::SeeNewTable => {
                    return self.newer_map.load(&guard)
                        .as_option()
                        // It is safe to `unwrap()` because a newer table must exist before any
                        // `KeySlot`s are set to `SeeNewTable`.
                        .expect("Can't set `KeySlot` to `SeeNewTable` before setting `newer_map`")
                        .get(key, outer_map, guard);
                },
            }
        }
        // We exhausted the entire map, so the value could still be inserted into the newer map
        return self.newer_map.load(&guard)
            .as_option()
            .map(|newer_map| newer_map.get(key, outer_map, guard))
            .unwrap_or(None)
    }

    /// Increments or decrements the current size of the map, returning the previous value in the
    /// map.
    pub fn update_size_and_defer(
        &'guard self,
        old_value_slot: MaybeNull<'guard, ValueSlot<V>>,
        insert_tombstone: bool,
        guard: &'guard Guard,
    ) -> Option<&'guard ValueSlot<V>>
    {
        // If we did not insert a tombstone, then we incremented if the old value was null or
        // tombstone.
        let increment = if !insert_tombstone {
            match old_value_slot.as_option() {
                None => true,
                Some(ref old_value) if old_value.is_tombstone() => true,
                Some(ref old_value) if old_value.is_seenewtable() => unreachable!(),
                Some(ref old_value) if old_value.is_valueprime() => unreachable!(),
                Some(_) => false,
            }
        } else {
            false
        };
        if increment {
            self.size.fetch_add(1, Ordering::SeqCst);
        }
        // If we did insert a tombstone, then we decremented if the old value was V
        let decrement = if insert_tombstone {
            match old_value_slot.as_option() {
                None => false,
                Some(ref old_value) if old_value.is_tombstone() => false,
                Some(ref old_value) if old_value.is_seenewtable() => unreachable!(),
                Some(ref old_value) if old_value.is_valueprime() => unreachable!(),
                Some(_) => true,
            }
        } else {
            false
        };
        if decrement {
            self.size.fetch_sub(1, Ordering::SeqCst);
        }
        match old_value_slot.as_option() {
            None => None,
            Some(value) => {
                unsafe { guard.defer(move || { value.drop(); })}
                Some(value.deref())
            }
        }
    }

    pub fn put_if_match<Q>(
        &'guard self,
        key: KeyCompare<K, Q>,
        mut put: PutValue<'v, V>,
        matcher: Match,
        outer_map: &AtomicBox<Self>,
        guard: &'guard Guard
    ) -> Option<&'guard ValueSlot<V>>
        where K: Borrow<Q>,
              Q: Hash + Eq + PartialEq<K> + ?Sized,
    {
        /// FIXME: See other cheat_lifetime() FIXME note above
        fn cheat_lifetime<'guard, 'v, V>(maybe: NotNull<'guard, V>) -> NotNull<'v, V> {
            MaybeNull::from_shared(Shared::from(maybe.as_shared().as_raw()))
                .as_option()
                .expect("parameter was `NotNull` to begin with")
        }
        let initial_index = self.hash_key(key.as_qref().as_qref2().as_q());
        let len = self.capacity();
        let mut key_index = None;
        let mut key = key;
        // First we need to find the key slot for the key.
        'find_key_loop:
        for index in (initial_index..len).chain(0..initial_index) {
            let atomic_key_slot: &AtomicPtr<KeySlot<K>> = &self.map[index].0;
            let option_key: Option<_> = atomic_key_slot.load(&guard)
                .as_option();
            let current_key: NotNull<KeySlot<K>> = match option_key {
                Some(existing_key) => existing_key,
                None => if put.is_tombstone() {
                    // The key is not taken, so we don't put a Tombstone value here
                    return None;
                } else if let Match::AnyKeyValuePair = matcher {
                    // If key is not taken, return None if we weren't going to insert something
                    // anyway
                    return None;
                } else {
                    match key {
                        KeyCompare::Owned(owned) => {
                            match atomic_key_slot.compare_null_and_set_owned(owned, guard) {
                                Ok(shared_key) => {
                                    // TODO: Raise keyslots-used count
                                    key = KeyCompare::Shared(shared_key);
                                    key_index = Some(index);
                                    break 'find_key_loop;
                                },
                                Err((not_null, _return)) => {
                                    key = KeyCompare::Owned(_return);
                                    not_null
                                },
                            }
                        },
                        KeyCompare::Shared(not_null) => {
                            match atomic_key_slot.compare_null_and_set(not_null, guard) {
                                Ok(shared_key) => {
                                    key = KeyCompare::Shared(shared_key);
                                    key_index = Some(index);
                                    break 'find_key_loop;
                                },
                                Err((not_null, _return)) => {
                                    key = KeyCompare::Shared(_return);
                                    not_null
                                }
                            }
                        },
                        KeyCompare::OnlyCompare(_) => {
                            // We are only comparing the keys and don't want to insert it if there
                            // is no key slot taken.
                            return None;
                        }
                    }
                },
            };
            match &*current_key {
                &KeySlot::Key(ref current_key) => if self.keys_are_equal(key.as_qref().as_qref2().as_q(), current_key.borrow()) {
                    key_index = Some(index);
                    break 'find_key_loop;
                }, // else continue
                &KeySlot::SeeNewTable => {
                    break 'find_key_loop;
                },
            }
        }

        let key_index: usize = match key_index {
            Some(k) => k,
            None => {
                // We have exhausted the entire probing range, so there are no key slots available
                // and need to resize.
                let new_table: NotNull<Self> = self.create_newer_map(guard);
                self.help_copy(new_table, true, outer_map, guard);
                return new_table.deref().put_if_match(key, put, matcher, outer_map, guard);
            },
        };

        // We have now found the key slot to use. This key slot will never change now so we know
        // that we may insert the value into the index `key_index`.

        let atomic_value_slot = &self.map[key_index].1;
        let mut old_value_slot: MaybeNull<_> = atomic_value_slot.load(&guard);

        // Now try to put the value into the map.
        let insert_tombstone = put.is_tombstone();
        loop {
            let value_slot_option = old_value_slot.as_option();
            // If the value we're trying to insert equals the current value, pretend we replaced it
            // with CAS and just return the current value.
            if let Some(v) = value_slot_option {
                if put.ptr_equals(v) {
                    return Some(v.deref());
                }
            }
            // Early return if the expected value in `matcher` doesn't equal the current value.
            match matcher {
                Match::Empty => if let Some(v) = value_slot_option {
                    return Some(v.deref())
                },
                Match::AnyKeyValuePair => match value_slot_option.map(|v| v.deref()) {
                    Some(&ValueSlot::Tombstone) | None => return None,
                    _ => (),
                }
                Match::Always => (),
            }
            // If it's prime then we need to copy the slot and try again in the new map.
            if value_slot_option.map_or(false, |v| v.is_prime()) {
                let newer_map = self.newer_map
                    .load(&guard)
                    .as_option()
                    .expect("Can't set a `ValueSlot` to `ValuePrime` before setting `newer_map`");
                self.copy_slot(&*newer_map, key_index, outer_map, guard);
                return newer_map.deref().put_if_match(key, put, matcher, outer_map, guard);
            }
            // If the new map exists, help copy the current slot and some others and try again.
            if self.newer_map.relaxed_exists(guard) {
                // TODO: if newer_map == None AND ((current_value is None AND table full) OR value
                // is prime) then resize
                return self.ensure_slot_copied(key_index, outer_map, guard)
                    .deref()
                    .put_if_match(key, put, matcher, outer_map, guard);
            }
            debug_assert!(value_slot_option.map_or(true, |v| !v.is_prime()));
            // Otherwise, try to CAS the value.
            match put {
                PutValue::Owned(owned) => match atomic_value_slot.compare_and_set_owned(
                    old_value_slot, owned, &guard
                ) {
                    Ok(_) => {
                        return self.update_size_and_defer(old_value_slot, insert_tombstone, guard);
                    },
                    Err((current, _return_ownership)) => {
                        debug_assert!(current.as_option().is_some());
                        old_value_slot = current;
                        put = PutValue::Owned(_return_ownership);
                    },
                },
                PutValue::Shared(shared) => match atomic_value_slot.compare_and_set(
                    old_value_slot, shared, &guard
                ) {
                    Ok(_) => {
                        return self.update_size_and_defer(old_value_slot, insert_tombstone, guard);
                    },
                    Err((current, _return_ownership)) => {
                        debug_assert!(current.as_option().is_some());
                        old_value_slot = current;
                        put = PutValue::Shared(cheat_lifetime(_return_ownership));
                    },
                },
            }
        }
    }

    pub fn clone_hasher(&self) -> S {
        self.hash_builder.clone()
    }
}

impl<'v, K, V, S> Drop for MapInner<'v, K, V, S> {
    fn drop(&mut self) {
        let guard = &::pin();
        for (mut k_ptr, mut v_ptr) in self.map.drain(..) {
            unsafe {
                guard.defer(move || {
                    if !k_ptr.is_tagged(&guard) {
                        k_ptr.try_drop(&guard);
                    }
                    v_ptr.try_drop(&guard);
                })
            }
        }
        // Don't drop the `newer_map` ptr, because `self` could have been dropped from `promote()`.
    }
}